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Abstract

Resveratrol is a naturally occurring polyphenol known to affect energy metabolism and insulin sensitivity in mice and lipogenic gene expression in
adipocytes. Here, we sought to get further insight into the impact of resveratrol on adipocyte biology by studying its effects on oxidative metabolism and the
expression of the insulin resistance-related adipokines resistin and Retinol-Binding Protein 4 (RBP4) in mature adipocytes. Effects were assessed in 3T3-L1
adipocytes and in adipocytes derived from primary mouse embryonic fibroblasts (MEF). Besides reducing triacylglycerol content and the mRNA levels of
lipogenic genes, resveratrol treatment resulted in both models in increased mRNA levels of carnitine palmitoyltransferase 1 (a rate-limiting enzyme in
mitochondrial fatty acid oxidation), reduced mRNA levels of receptor interacting protein 140 (a suppressor of oxidative metabolism), and signs of enhanced flux
through the fatty acid beta-oxidation pathway. In primary MEF-derived adipocytes, the treatment also increased mitochondrial DNA content and the mRNA
levels of subunit II of cytochrome oxidase (a component of the mitochondrial respiratory chain) and of uncoupling protein 1. Expression of resistin and RBP4 was
reduced in both adipocyte models following resveratrol treatment. The results indicate that resveratrol directly acts in mature white adipocytes to favor a
remodeling toward increased oxidative capacity and reduced lipogenesis, while down-regulating two putative insulin resistance factors. These results constitute
novel insights into resveratrol action in adipocytes that add to the potential of this food phytochemical and its synthetic analogues for the control of obesity and
related metabolic disorders.
© 2011 Elsevier Inc. All rights reserved.
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1. Introduction

Resveratrol (3,5,4′-trihydroxystilbene) is a naturally occurring
polyphenol present in grapes, berries, peanuts and other food
vegetables. Resveratrol has many remarkable effects in mammals
believed to be largely due to its ability to activate silent information
regulation 2 homolog 1 (SIRT1) [1], a sirtuin enzyme that catalyzes
NAD+-dependent protein deacetylation according to the cell's
nutritional status [2]. The bioactivity of resveratrol includes effects
on energy metabolism and related aspects. In mice on high fat diets,
supplementation with resveratrol has been shown to increase
☆ Grant, sponsors and funding sources: This work was supported by the
Spanish Government (grants AGL2006-04887/ALI and AGL2009-11277 to A.
P.). Our Laboratory is a member of The European Nutrigenomics Organization
NuGO (EU Contract FOOD-CT-2004-506360). CIBER de Fisiopatología de la
Obesidad y Nutrición is an initiative of the ISCIII.

⁎ Corresponding author. Laboratori de Biologia Molecular, Nutrició i
Biotecnologia. Departament de Biologia Fonamental i Ciències de la Salut,
Universitat de les Illes Balears, Crta. Valldemossa Km 7.5, 07122 Palma de
Mallorca, Spain. Tel.: +34 971 172734; fax: +34 971 173426.

E-mail address: luisabonet@uib.es (M.L. Bonet).

0955-2863/$ - see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.jnutbio.2010.07.007
mitochondrial content/activity in skeletal muscle [3], brown adipose
tissue (BAT) [3] and liver [4], to enhance whole body basal energy
expenditure [3], to protect against the development of diet-induced
obesity [3] and to improve metabolic disturbances such insulin
resistance and hepatosteatosis [3–5]. Resveratrol treatment also
reduced abdominal fat content and improved metabolic disturbances
in a genetic rodent model of obesity, the obese Zucker rat [6]. Effects
of resveratrol on energy metabolism and metabolic health are most
likely SIRT1-mediated, as similar changes have been described in
transgenic mice overexpressing SIRT1 [7,8] and in rodents treated
with synthetic SIRT1 activators [9–11], and they have been linked to
the ability of SIRT1 to deacetylate and thereby activate peroxisome
proliferator-activated receptor γ coactivator 1α (PGC-1α) [3,12], an
essential cofactor in mitochondrial biogenesis and function driving
metabolic rate [13].

Direct effects on white adipose tissue (WAT) are likely to
contribute to the systemic changes elicited by resveratrol treat-
ment/SIRT1 activation in vivo. Expression of SIRT1 is low in adipose
tissue of humans and rodents with obesity [14,15], and resveratrol
treatment has been shown to inhibit adipogenesis in maturing white
preadipocytes [16–18] and to enhance fat mobilization [14,16,19] and
reduce lipogenic gene expression [20], insulin-dependent glucose
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Table 1
Nucleotide sequences of primers used for PCR amplification

Gene Primer sequence Accession number

COX-II 5′-aagacgccacatcccctatt-3′
5′-cttcagtatcattggtgccct-3′

AF378830

CPT1-L 5′-acaaattatgtgagtgactgg-3′
5′-gatcccagaagacgaatagg-3′

NM_013495

GLUT4 5′-ggcatgcgtttccagtatgt-3′
5′-gcccctcagtcattctcatc-3′

NM_009204

PGC-1α 5′-catttgatgcactgacagatgga-3′
5′-ccgtcaggcatggaggaa-3′

AF049330

PPARγ 5′-agaccactcgcattcctttg-3′
5′-tcgcactttggtattcttgg-3′

NM_011145.2

RBP4 5′-actggggtgtagcctccttt-3′
5′-ggtgtcgtagtccgtgtcg-3′

NM_011255

Resistin 5′-ttccttttcttccttgtccctg-3′
5′-ctttttcttcacgaatgtccc-3′

NM_022984

RIP140 5′-cggcctcgaaggcgtgg-3′
5′-aaacgcacgtcagtatcgtc-3′

NM_173440.2

UCP1 5′-ggcattcagaggcaaatcag-3′
5′-gcattgtaggtccccgtgta-3′

NM_009463.2

β-Actin 5′-tacagcttcaccaccacagc-3′
5′-tctccagggaggaagaggat-3′

NM_007393.2

LRP10 5′-actgcacctgggttatcctg-3′
5′-gggagattggtggctgta-3′

NM_022993

Fig. 1. Cytotoxicity of resveratrol in the adipocyte cell models used. Cytotoxicity was
assessed in 3T3-L1 adipocytes (A) and primary MEF-derived adipocytes (B)
differentiated in 12-well plates by measuring lactate dehydrogenase activity in the
culture medium following a 24-h treatment with the indicated resveratrol (RSV)
concentration or vehicle (0.1% DMSO). For each cell model, data are expressed relative
to the mean value of the vehicle-treated cells, which was set at 1, and are the mean±S.
E.M. of n=12 wells per treatment condition, distributed in three separate experiments
(4 wells per treatment condition per experiment). Student's t test significance: ⁎, Pb.05
versus vehicle.
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uptake [20] and lipogenesis from glucose [19] in fully differentiated
fat cells. Effects of resveratrol/SIRT1 activation in white adipocytes
have been linked to the repression of peroxisome proliferator-
activated receptor γ (PPARγ) [16,20], a transcription factor essential
for adipogenesis and for the maintenance of the characteristics of
mature adipocytes [21]. Whether resveratrol can elicit an increase in
oxidativemetabolism in white adipocytes as it does in other cell types
remains, however, largely unexplored.

Resveratrol also has an impact on the secretory function of adipose
tissue. In particular, resveratrol was shown to reduce proinflamma-
tory cytokine expression in cultured adipocytes [22–25] and in rodent
WAT [6]. Because adipose tissue inflammation is tightly linked to
systemic insulin resistance [26], resveratrol-induced down-regula-
tion of the adipose expression of cytokines such as interleukin 6
[22,24,25], monocyte chemoattractant protein-1 [23], tumor necrosis
factor α [6] and plasminogen activator inhibitor-1 [22] may
conceivably contribute to the insulin sensitizing effect elicited by
resveratrol supplementation in vivo [3,4,6]. In addition, resveratrol
was shown to up-regulate the expression of adiponectin — an
adipokine with well-established antidiabetic and anti-inflammatory
action— both in cultured adipocytes [15] and in WAT of obese Zucker
rats [6].

In this work, we sought to get further insight into the impact of
resveratrol on adipocyte biology by studying its effects on aspects not
yet addressed, namely, its impact on adipocyte oxidative metabolism/
fatty acid oxidation and the expression of resistin and retinol binding
protein 4 (RBP4), two adipokines that act as insulin resistance factors
in mice [27,28] and may also be related to insulin resistance and
inflammation in humans [29,30]. Effects of resveratrol were assessed
both in 3T3-L1murine adipocytes, a well-established white adipocyte
cell model, and in mature adipocytes derived from primary mouse
embryonic fibroblasts (MEF), which are increasingly been used as
white adipocyte model cells. The two models were used in view of
previously published differences between them in basal adipokine
expression [31] and the expression of energy metabolism-related
genes [32].

2. Methods and materials

2.1. Cell culture and differentiation

3T3-L1 cells (American Type Culture Collection, LGC Deselaers, Barcelona, Spain)
were grown to confluence in basal medium — Dulbecco's modified Eagle's medium
(Sigma, St. Louis, MO, USA) with 50 IU/ml penicillin (Sigma), 50 μg/ml streptomycin
(Sigma) and 2 mM L-glutamine (Sigma) — supplemented with 10% new born calf
serum (Linus, Madrid, Spain). Two days after the cells reached confluence (referred
as Day 0), they were induced to differentiate in basal medium containing 10% fetal
bovine serum (FBS; Invitrogen, Carlsbad, CA, USA), 1 μM dexamethasone (DEX;
Sigma), 0.5 mM methylisobutylxanthine (MIX; Sigma) and 1 μg/ml insulin (Sigma)
for 48 h, followed by 48 h in basal medium containing 10% FBS and 1 μg/ml insulin.
The cells were subsequently refed every other day fresh basal medium supplemen-
ted with 10% FBS (without insulin). Primary MEFs were prepared and cultured as
described previously [33]. MEFs on passage 3-5 were grown to confluence in
AmnioMAX-C100 basal medium (Invitrogen) supplemented with 7.5% AmnioMAX-
C100 supplement (Invitrogen), 7.5% FBS, 50 IU/ml penicillin, 50 μg/ml streptomycin
and 2 mM L-glutamine. For differentiation, 2-day postconfluent cells were treated
(Day 0) with growth medium containing 1 μM DEX, 0.5 mM MIX, 5 μg/ml insulin
and 0.5 μM rosiglitazone (BioVision, Mountain View, CA, USA) for 48 h; the cells
were subsequently refed every other day fresh medium containing 5 μg/ml insulin
and 0.5 μM rosiglitazone. Two different lots of 3T3-L1 cells and MEFs from two
different embryos were used in the study. In both cell systems, adipogenesis was
monitored by morphological examination of the cells for lipid accumulation. trans-
Resveratrol (Sigma, catalogue number R5010) was added together with fresh
medium when more than 90% of the cells had acquired the adipose phenotype (on
day 8 of culture), at the final doses and for the times indicated in the figure legends.
For treatment, stock solutions of resveratrol in dimethyl sulfoxide (DMSO) as vehicle
were prepared at 1000× the desired final working concentrations, diluted 1:1000
with culture medium and added to the cells. Control cells received culture medium
containing an equal volume of DMSO (0.1%). For cytotoxicity assays, mature
adipocytes were incubated with either 0.1% DMSO or resveratrol (5–100 μM) for 24
h after which lactate dehydrogenase activity in the culture medium was measured
using a commercial kit (Roche Diagnostics, Mannheim, Germany).
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2.2. Gene-expression and mitochondrial DNA content analysis

Total RNA and DNA were extracted from cultured cells using Trizol reagent
(Invitrogen) according to the supplier's instructions. For cDNA synthesis, 0.25 μg total
RNA was denatured at 65°C for 10 min prior to being reverse transcribed using murine
leukemia virus reverse transcriptase (MuLV RT, Perkin-Elmer, Madrid, Spain) in the
presence of 50 pmol of random primers, in a Perkin-Elmer 2400 Thermal Cycler.
Polymerase chain reaction (PCR) analysis on cDNA and DNA were carried out on a
StepOnePlus Real-Time PCR System (Applied Biosystems). Sense and antisense primers
used were designed with specific primer analysis software Primer3 (Whitehead
Institute for Biomedical Research, Cambridge, MA, USA), and their specificity analyzed
by the ENTREZ and BLAST databases utilities (National Center for Biotechnology
Information, Bethesda, MD, USA). The sequences of the primers used are shown in
Table 1. Relative gene-expression was calculated using the 2ΔΔCt method [34] with β-
actin and low-density lipoprotein receptor-related protein 10 (LRP10) [35] as internal
controls; normalization to each of these two genes gave similar results, and mean
values were taken for representation in Figs. 2, 3 and 5. As a measure of mitochondrial
content, the mitochondrial DNA to nuclear DNA ratio was determined by real-time
PCR quantification of mitochondrial Cox1 DNA and nuclear18S DNA as previously
described [36].

2.3. Adipokine analysis

Mature adipocytes were treated with varying concentrations of resveratrol or
vehicle (0.1% DMSO) along with fresh medium for 24 h, after which media were
collected and analyzed for RBP4 and resistin content. RBP4 protein levels were
determined by immunoblotting as previously described [31]. In brief, aliquots of
collected media (25 μl) were boiled in Laemmli sample buffer containing 20% 2-
mercaptoethanol, fractionated in sodium dodecyl sulfate polyacrylamide gel
Fig. 2. Effects of resveratrol treatment on triacylglycerol content and PPARγ and GLUT4 express
adipocytes differentiated in 6-well plates were treated with vehicle (0.1% DMSO, control cells
fresh RSV every 24 h, followingwhich cellular triacylglycerol (TG) content was determined. (C a
plates were treated with vehicle or RSV at the indicated concentrations for 24 h before harvesti
normalized to the expression of β-actin and LRP10. Data are expressed relative to themean valu
B) or n=12 (C, D) wells per treatment condition, distributed in at least three separate experime
letter are statistically different by LSD post hoc comparison following one-way ANOVA (Pb.05
electrophoresis gels and electrotransferred onto polyvinylidene fluoride (PVFD)
membranes (Bio-Rad, Madrid, Spain). Black amide B10 staining provided visual
evidence for correct loading and transfer of proteins. After blocking, membranes
were incubated with polyclonal anti-mouse RBP4 antibody raised in rabbits (Axxora,
San Diego, CA, USA). Horseradish peroxidase-conjugated anti-rabbit IgG antibody
was used as secondary antibody (Amersham Biosciences, Buckinghamshire, UK). The
immunocomplexes were revealed using an enhanced chemiluminiscence detection
system (Amersham Pharmacia Biotech, Buckinghamshire, UK). Membranes were
exposed to Hyperfilm ECL (Amersham Biosciences, Barcelona, Spain). Resistin
protein levels accumulated in the culture medium were determined using an
ELISA kit (Phoenix Pharmaceutical, Belmont, CA, USA).

2.4. Measurement of fatty acid beta-oxidation

After exposure of differentiated adipocytes to resveratrol (20 μM) or vehicle (0.1%
DMSO) during 20 h, medium was removed and cells were incubated for 4 h in fresh
medium containing 0.2 mM L-carnitine (Sigma) and 200 μM [14C(U)] palmitate (0.1
μCi/ml, from Perkin Elmer, Boston, MA, USA) in the continued presence of resveratrol
or vehicle. Incubations were terminated by acidification with 6 M HCl. Acid-soluble
products in 2 ml of the medium were extracted by addition of 1 ml cold 1 M HClO4.

After centrifugation (10 min, 1800 g), radioactivity in the supernatant was measured
by scintillation counting. DNA content in parallel cultures of vehicle- and resveratrol-
treated cells was analyzed using a PCR method [36] and found to be unaffected
by resveratrol.

2.5. Other analysis

The effect of resveratrol on adipocyte triacylglycerol content was analyzed after
72 h of treatment where fresh medium and resveratrol were added to the cells every
ion levels in mature adipocytes. (A and B) 3T3-L1 adipocytes and primary MEF-derived
) or RSV at the indicated concentrations for 3 days with replacement of medium with
nd D) 3T3-L1 adipocytes and primaryMEF-derived adipocytes differentiated in 12-well
ng and total RNA extraction. Gene-expression was determined by real time PCR and was
e of the vehicle-treated cells, which was set at 100%, and are themean±SEM of n=9 (A,
nts (3 wells per treatment condition per experiment). Bar values not sharing a common
).

image of Fig. 2
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24 h. For quantification of triacylglycerol content, cellular lipids were stained with Oil
Red O (Sigma), followed by extraction of the dye with isopropanol and spectropho-
tometric quantification at 510 nm.
2.6. Statistics

Data are presented as mean±S.E.M. Statistical significance was assessed by two-
tailed Student's t test or one-way analysis of variance (ANOVA) followed by least
significance difference (LSD) post hoc comparison. Results were considered statisti-
cally significant when Pb.05.
3. Results

3.1. Cytotoxicity of resveratrol in the adipocyte cell models used

Resveratrol treatment has been reported to decrease viability of
mature 3T3-L1 adipocytes partly by increasing apoptosis [18,37,38].
We therefore analyzed the cytotoxicity of a 24 h treatment with
varying resveratrol doses in our adipocyte working models by the
lactate dehydrogenase method [39] (Fig. 1). At concentrations up to
20 μM, resveratrol did not elicit higher cytotoxicity than the vehicle
(0.1% DMSO), whereas at 50 μM and 100 μM, it had a significant
cytotoxic effect, which was especially evident in the primary MEF-
derived adipocytes. In the remaining experiments, resveratrol was
used at final concentrations ranging from 5 to 20 μM.
Fig. 3. Effects of resveratrol treatment on oxidative and thermogenic capacity in mature adipo
plates were treated with vehicle (0.1% DMSO, open bars) or 20 μM resveratrol (RSV, black bars)
nuclear DNA ratio (A, B) was determined by a real time PCR method, as described in Metho
expression of β-actin and LRP10. Data are expressed relative to the mean value of the vehicle-t
D) wells per treatment condition, distributed in at least three separate experiments (3 wells
vehicle; n.d. (non-detectable), UCP1mRNA levels in 3T3-L1 adipocytes were very low both in c
method applied.
3.2. Resveratrol treatment reduces triacylglycerol content and
PPARγ and glucose transporter 4 (GLUT4) mRNA expression
levels in mature adipocytes

We examined whether previously reported effects of resveratrol
treatment in fully differentiated adipocytes were reproduced in our
working cell models as a mean of validating them. In accordance with
previous findings in 3T3-L1 adipocytes [16], exposure to 5–20 μM
resveratrol for 3 days triggered a modest, yet significant, reduction in
intracellular triacylglycerol content both in mature 3T3-L1 adipocytes
(15% reduction at 20 μM; Pb.05) and primary MEF-derived adipocytes
(12% reduction at 20 μM; Pb.05) (Fig. 2A and B, respectively).
Resveratrol treatment has been reported to inhibit PPARγ gene-
expression and to increase proteasome-dependent PPARγ protein
degradation in mature 3T3-L1 adipocytes [20]. In keeping, we found
that exposure to resveratrol for 24 h led to decreased PPARγ mRNA
levels both in mature 3T3-L1 adipocytes (39% reduction at 10 μM;
Pb.001) and in primary MEF-derived adipocytes (23% reduction at
10 μM; Pb.05) (Fig. 2C and D). Inhibition of PPARγ [21,40] and
resveratrol treatment [20] both have been shown to result in reduced
GLUT4 expression in mature 3T3-L1 adipocytes. In keeping, we found
a down-regulatory effect of resveratrol treatment on GLUT4 mRNA
levels both in 3T3-L1 adipocytes (39% reduction at 10 μM; Pb.001)
and in primary MEF-derived adipocytes (24% reduction at 10 μM;
Pb.05) (Fig. 2C and D).
cytes. 3T3-L1 adipocytes and primary MEF-derived adipocytes differentiated in 12-well
for 24 h before harvesting and total RNA and DNA extraction. Themitochondrial DNA to
ds. Gene-expression (C, D) was analyzed by real time PCR and was normalized to the
reated cells, which was set at 100%, and are the mean±S.E.M. of n=9 (A, B) or n=12 (C,
per treatment condition per experiment). Student's t test significance: ⁎Pb.05 versus

ontrol and RSV-treated cells and could not be consistently measured using the analytical

image of Fig. 3


Fig. 4. Effect of resveratrol treatment on palmitate oxidation to acid soluble metabolites
in mature adipocytes. 3T3-L1 adipocytes (A) and primary MEF-derived adipocytes (B)
differentiated in 6-well plates were treated with vehicle (0.1% DMSO, open bars) or 20
μM resveratrol (RSV, black bars) for 20 h. The medium was then changed and the cells
incubated with [14C(U)] palmitate in the continued presence of vehicle or RSV for 4 h.
14C-labeled acid soluble metabolites were measured as described in Methods. Data are
expressed relative to themean value of the vehicle-treated cells, whichwas set at 100%,
and are the mean±S.E.M. of n=9 (A) or n=12 (B) wells per treatment condition,
distributed in at least three separate experiments (three wells per treatment condition
per experiment). Student's t test significance: ⁎Pb.05 versus vehicle.
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3.3. Resveratrol treatment increases oxidative and thermogenic capacity
in mature adipocytes

Wenext examined the effects of resveratrol onmitochondrial DNA
content and the mRNA expression levels of several genes related to
mitochondria biogenesis and function. In primary MEF-derived
adipocytes, a 24 h treatment with 20 μM resveratrol resulted in a
significant increment in mitochondrial DNA levels (50% increase)
(Fig. 3B) and the mRNA levels of key genes related to oxidative
metabolism and thermogenesis, namely: liver type carnitine palmi-
toyltransferase 1 (CPT1-L), which is necessary for mitochondrial
import of fatty acids, the rate-limiting step in mitochondrial long-
chain fatty acid oxidation (2.4-fold increase); subunit II of cyto-
chrome oxidase (COX-II), a component of the mitochondrial
respiratory chain (1.6-fold increase); and uncoupling protein 1
(UCP1), a mitochondrial uncoupler whose activity may drive
enhanced substrate oxidation (4.8-fold increase) (Fig. 3D). PGC-1α
mRNA levels were not significantly affected, whereas themRNA levels
of receptor-interacting protein 140 (RIP140) — a corepressor for
many nuclear receptors that acts as a major suppressor of oxidative
metabolism in white adipocytes [41,42] — were significantly reduced
by 25% (Fig. 3D). In 3T3-L1 adipocytes, treatment with 20 μM
resveratrol induced a significant 1.2-fold increase in CPT1-L mRNA
levels and a significant 28% reduction in RIP140 mRNA levels, yet it
did not affect the other parameters analyzed (Fig. 3A and C). Lower
resveratrol concentrations tested (5 and 10 μM) did not significantly
affect the expression of the oxidative genes assayed in either
adipocyte cell model (results not shown). The production of acid
soluble metabolites from exogenously administered, uniformly
labeled 14C-palmitate was enhanced by pre-exposure to 20 μM
resveratrol, by 50% in the 3T3-L1 adipocytes and by 90% in the
primary MEF-derived adipocytes (Fig. 4).

3.4. Resveratrol treatment reduces resistin and RBP4 expression in
mature adipocytes

3T3-L1 adipocytes in the untreated state displayed a consistent
expression of resistin mRNA yet very low or undetectable levels of
RBP4 mRNA (this work and [31]). Treatment with 5 to 20 μM
resveratrol reduced resistin mRNA levels in 3T3-L1 adipocytes (Fig.
5A) as well as the accumulation of resistin in the culture medium
in contact with the cells (Fig. 5B). In primary MEF-derived
adipocytes, expression of both resistin and RBP4 was consistently
detectable in the untreated state (this work and [31]), and
exposure to 5–20 μM resveratrol decreased the cellular mRNA
levels of both adipokines (Fig. 5C), as well as their accumulation in
the culture medium (Fig. 5D and E).

4. Discussion

The strong association between obesity and insulin resistance
implicates the adipocyte as an important link in the pathophysiology
of these two disorders. A dysregulated secretion of adipokines is a
feature of adipose tissue in obesity and insulin resistant states
(reviewed in Ref. [30]). In addition, even if fatty acid oxidation is not a
major pathway in adipocytes, a number of studies have shown
mitochondrial dysfunction and reduced expression of genes involved
in fatty acid oxidation and thermogenesis in adipose tissue from
obese and diabetic animal models and humans [43–47]. These and
other results have led to the concept that increases in oxidative
capacity in white adipocytes may represent a target for treatment of
obesity and insulin resistance [48,49]. In cell and animal models,
increases in oxidative metabolism in white adipocytes have been
demonstrated following certain genetic manipulations, such as forced
expression of PGC-1α [50] or inactivation of the retinoblastoma
protein [51,52], and after exposure to certain bioactive food
components, such as vitamin A derivatives and polyunsaturated
fatty acids of marine origin [31,53–57]. In this report, we show that
resveratrol directly acts on mature murine white adipocytes trigger-
ing changes in gene-expression and related biochemical parameters
consistent with both reduced lipogenesis and enhanced substrate
oxidation. We also present first evidence of an inhibitory effect of
resveratrol on the adipose expression of resistin and RBP4, two
adipokines that antagonize insulin action in mice and may also be
related to insulin resistance and inflammation in humans [27–30].

In mature white adipocytes in culture, reduction of triacylglycerol
content and promotion of fat mobilization following exposure to
resveratrol has been reported and linked to PPARγ repression [16,20].
Our results are in line with these previous reports, yet they extend
them by providing evidence suggesting that activation of oxidative
metabolism can also contribute to the resveratrol-induced reduction
in adipocyte lipid content. Thus, exposure of adipocytes to resveratrol
oppositely affected the gene-expression levels of a recognized
suppressor of oxidative metabolism (RIP 140) and a rate-limiting
enzyme for mitochondrial fatty acid oxidation (CPT1-L), down-
regulating the former and up-regulating the latter. In concord with
these gene-expression changes, resveratrol-treated adipocytes dis-
played signs of increased flux through the fatty acid beta-oxidation
pathway, and a reduced triacylglycerol content following long-term
treatment. The significance of these results is reinforced by the fact
that they were reproduced in two different adipocyte cell models,
namely 3T3-L1 adipocytes and primary MEF-derived adipocytes.
Furthermore, in the latter model, increases in mitochondrial DNA
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Fig. 5. Effect of resveratrol treatment on resistin and RBP4 expression in mature adipocytes. 3T3-L1 adipocytes (A and B) and primary MEF-derived adipocytes (C-E) were treated with
vehicle (0.1% DMSO) or the indicated RSV concentrations along with fresh medium for 24 h before total cellular RNA extraction or culture medium collection. Resistin and RBP4mRNA
levels (A, C) were analyzed by real time PCR and normalized to the expression of β-actin and LRP10. mRNA data are expressed relative to the mean value of the vehicle-treated cells,
which was set at 100%, and are the mean±S.E.M. of n=12 wells per treatment condition, distributed in four separate experiments (3 wells per treatment condition per experiment).
RBP4 mRNA could not be consistently measured in 3T3-L1 adipocytes due to very low expression levels. Levels of resistin accumulated in the culture medium (B and D) were assessed
using an ELISA kit, and the data are the mean±S.E.M. of n=6 wells per treatment condition, distributed in two separate experiments (three wells per treatment condition per
experiment). Levels of RBP4 accumulated in the culture medium of primary MEF-derived adipocytes were assessed by immunoblotting (E); a representative immunoblot is shown,
together with a section of the black amide B10-stained blot showing equal loading and blotting of proteins (25 μl of noncondensed culture medium per lane). The cells were
differentiated in 12-well plates for analysis of effects onmRNA levels and in six-well plates for analysis of effects on protein accumulation in medium. Bar values not sharing a common
letter are statistically different by LSD post hoc comparison following one-way ANOVA (Pb.05).
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content and COX-II and UCP1 mRNA expression levels were also
apparent following resveratrol treatment. UCP1 is a brown adipocyte-
specific molecular marker, yet its expression has been shown to be
inducible in primary MEF-derived adipocytes, but not 3T3-L1
adipocytes [54], following certain treatments, in particular retinoid
administration [32]. Enhanced mitochondrial function and fatty acid
oxidation has been previously reported in skeletal muscle, BAT and
liver of resveratrol-supplemented mice, yet effects on WAT metab-
olism were not addressed in those in vivo studies [3,4]. Our results
might, however, be in line with a previous report pointing to
increased expression of marker genes of oxidative metabolism in
WAT of mice following in vivo treatment with a synthetic SIRT1
activator (SRT1729) [10].

Stimulatory effects of resveratrol treatment/SIRT1 activation on
tissue fatty acid catabolism have been previously related to the
activation of PGC-1α through its SIRT1-catalysed deacetylation [3,12]
and the indirect activation of AMP-dependent protein kinase [10]. Our
results are first to suggest that effects on RIP140may also be involved.
Interestingly, depletion of RIP140 has been shown to result in the up-
regulation of CPT1 and UCP1 gene-expression, without changes in
PGC-1α gene-expression, both in MEF-derived adipocytes [41] and in
WAT of RIP140-knockoutmice, which are lean and resistant to dietary
obesity [58].

Resveratrol treatment or SIRT1 activation have been shown to
improve insulin sensitivity in diet-induced and genetic animal
models of obesity [3,4,6,10]. Our findings indicate inhibitory effects
of resveratrol on the adipose expression of resistin and RBP4 that
could contribute to a systemic insulin-sensitizing effect. In fact,
effects on the secretory function of adipocytes − together with
independent effects on other glucose responsive tissues such as
skeletal muscle and the liver − might be particularly relevant for
agents, such as resveratrol, capable of improving systemic insulin
sensitivity coincident with decreased PPARγ expression and glucose
uptake in adipocytes [20]. Reduction of resistin expression after
resveratrol treatment might be secondary to resveratrol-induced
PPARγ repression (this work and [16,20]), as in mice adipocyte-
specific resistin gene-expression is under the control of PPARγ [59].
Of note, in the present work the effects of resveratrol down-
regulating resistin and RBP4 expression in adipocytes were
evidenced at lower doses than its effects on the expression of
oxidative marker genes, mitochondrial DNA content and palmitate
oxidation. This might be in line with findings in mice on high fat
diets supplemented with resveratrol as, in those studies, reduced
adiposity and enhanced whole body energy expenditure were
evidenced following high resveratrol doses (400 mg/kg per day)
[3], whereas an improvement in insulin sensitivity was already
present at lower doses (22.4 mg/kg per day) that did not affect
adiposity, body weight or body temperature of treated animals [4].

In summary, this study shows that resveratrol directly promotes a
remodeling of mature white adipocytes towards increased capacity
for oxidative metabolism and reduced lipogenesis, while down-
regulating resistin and RBP4, two adipokines that have been
implicated as insulin resistance factors. These results constitute
novel insights into resveratrol action in adipocytes, and they add to
the potential of this food phytochemical and its synthetic analogues in
the control of obesity and related metabolic disorders.
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